LC 2015: Paper 2

Question 1 (25 marks)

Question 1 (a)
W = Win, L = Loss

		Die 2						
		1	2	3	4	5	6	
	1	$[2]=\mathrm{L}$	$[3]=\mathrm{L}$	$[4]=\mathrm{L}$	$[5]=\mathrm{L}$	$[6]=\mathrm{L}$	$[7]=\mathrm{L}$	
	2	$[3]=\mathrm{L}$	$[4]=\mathrm{L}$	$[5]=\mathrm{L}$	$[6]=\mathrm{L}$	$[7]=\mathrm{L}$	$[8]=\mathrm{L}$	
	1	3	$[4]=\mathrm{L}$	$[5]=\mathrm{L}$	$[6]=\mathrm{L}$	$[7]=\mathrm{L}$	$[8]=\mathrm{L}$	

Marking Scheme Notes

Question 1 (a) [Scale 10C (0, 4, 8, 10)]

4: - At least one other correct entry

- Partially correct table with at least 5 correct totals or couples

8: - Five or more correct entries including at least one other loss and one other win

- Table correctly completed with totals or couples but no indication of W or L

Question 1 (b)

$$
P(\text { Event })=\frac{\text { Number of desired outcomes }}{\text { Number of possible outcomes }}
$$

(i) $P(\mathrm{~W})=\frac{\text { Number of wins }}{\text { Number of possible outcomes }}=\frac{10}{36}=\frac{5}{18}$
(ii) $P(\mathrm{~L})=\frac{\text { Number of losses }}{\text { Number of possible outcomes }}=\frac{26}{36}=\frac{13}{18}$
$P(\mathrm{~L}$ and then L and then L$)=\frac{13}{18} \times \frac{13}{18} \times \frac{13}{18}=0.3767$

Marking Scheme Notes

Question 1 (b) [Scale 10C (0, 4, 8, 10)]
4: - Favourable outcomes identified

- (i) correct only $\left(\frac{10}{36}, \frac{5}{18}, 0 \cdot 2 \dot{7}, 0 \cdot 28,0 \cdot 3\right)$

8: - (i) omitted or of no merit but (ii) $\left(\frac{13}{18}\right)^{3}$

Question 1 (c)

This is a possible outcome: L W L L L W L L L W
The last W has to happen. The other 9 letters can be in any order.
$P(3 \mathrm{~W}$'s with a W on tenth throw $)={ }^{9} C_{2}\left(\frac{5}{18}\right)^{2}\left(\frac{13}{18}\right)^{7} \times\left(\frac{5}{18}\right)=0 \cdot 0791$

Marking Scheme Notes

Question 1 (c) [Scale 5C (0, 2, 4, 5)]
2: - Relevant binomial formula with some substitution

- Identifies p^{7} or $(1-p)^{3}$ or $(1-p)^{2}$ or $1-p$
- Listing at least any two of the ten throws

4: • Probability of two wins in nine throws

